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INTRODUCTION

Periodic tuning is a virtually essential aspect in the maintenance
of almost any physical plant. One method of such tuning is that known as

sensitivity points turning method. The theory of this method and application

to single-input/single-output (SISO) systems have been fairly well developed.
This stu&y“investigates the application of sensitivity points turning concepts
to the tuning of multi-input/multi-output (MIMO) systems.

The concept of sensitiviEies in feedback systems was originally

Y

introduced by Bode in the 1940's [1]. Methodologies for using sensitivity

ﬂﬁ information for optimal tuning of system parameters date back to the late

I\A.-: / o .

” 1950's and early 1960's and include work done by Meissinger [2,3]% Margolis
- Pt

e and Leondes [4,5), and numerous others (see [6,7]). These works all involve

the use of system sensitivities in order to provide a searchless means of

computing the gradient of a given cost function which possesses some
extremal value that is related in some way to some desired characteristic
performance of the system under tuning.

Included in this class of optimization techniques are the iterative
parameter optimization techniques, such as those of Meissinger [2,3], Brunner
(8], Roberts [9], and Kokotovic [10]. The choice and generation of pertinent
sensitivities for use in such techniques are topics treated in works by,
among others, Kokotovic [10], and Wilkie and Perkins [11,12]. The sensitivity
points tuning process, developed by Kokotovic [10], is an iterative process
which obtains sensitivities in a straightforward manner and then adjusts

parameters in an optimizing fashion.

:
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1l.1. Sensitivity Points Tuning Concepts

Consider the system depicted in Figure 1. In this arrangement,

which occurs frequently in practical applications of control systems,

compensator blocks Kl(ai,s) and KZ(Bj,s) of known structure are used for

caad

control of system blocks wl(s) and Wz(s), whose structures need not be

necessarily known.

K

For a given input r(s) and some small deviations Aa, and ABj

i

L e

) 0 0 , .
from some nominal parameter values oy and Bj, respectively, a Taylor series

expansion of the output response yields

0 0
y(ai + fa, Bj + ABj , S)

n

Sl cictiottle i el

0 0 )
= Y(ai s Bj » 8) + I Y y(ag , S)ha, + ...
i=1 % *
m
3 0
+ I — y(B, , s)AR, + ...
Y- ’ j (L)
=t 5 ] :
E
where ‘
£ o y(ai,s) = sensitivity of the output y(ai,Bj,s) with respect
’ 0
X to the parameter o, at a, = a,, and \
- i i i 1
I:." ‘1
2 38 y(Bj,s) = sensitivity of the output y(ai,Bj,s) with respect .
= i ~
L to the parameter B, at B, = BQ.
L J J J
. {
L Note that (1) may be rewritten as %
. @
[ 0 0
' + AB, s) !
E_ y(o, + bay Bj i ]
’ - 0 ) s) « Ao+ ...
L.' = y(a; , 3. ,8) * /ay(ai ’ éj ’ i
re.
o 0 0 ()
. " { y 3. , S) ¢ AS +
o + Tyl 3y

. . o AR o e e . . B A R
. P S A e T RRRSI
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4
where
T
a = [OLl .,.Ot.n] s
_ T
Aa = [Aa1 cee Aan] 5
_ T
B = [Bl N Bm] ’
and
T
AB = [ABl .o ABm]

If the expansion is truncated at the first-order term and
y(ag,B?,s) is taken to be the nominal response of the system, then the
derivation of the system responsey(ai + Aai,Bj + ABj,s) from the nominal

response y(ag,B?,s), denoted as the error e(s), may be approximated by

- 0 0
e(s) = Vyy(a, , Bj , 8) * Aa

0 0
+ Vsy(ui s Bj , S) ¢ AB . (3)

If a” = ao + Ao, B” = BO + A8, and Aa is known to be small, then

the approximation in (3) may be rewritten as
e(s) = Vay(ai , Bj , 8) * Ao
+ Uyl Bj » 8) * AB . (4)

The approximation made in (4) implies that knowledge of the

sensitivities 3&- y(a{,s) and 3%3 y(Bj,s) would allow one to approximate
i

appropriate values of Aai and ABj, subtract them from the values of a£
and 35 resident in the system, and reduce the amount of error e(s). The

resultant e(s) would have a magnitude approximately that of the higher-

order terms ignored in the approximation of e(s) made in (4). The magnitude

At &%

Addl

adecndicadh
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of this resultant e(s) would be, therefore, smaller than that of the original ;i
e(s). Repetition of this process through several iterations should reduce ]
the magnitude of e(s) to some minimal value (the presence of measurement }i
noise may make it impossible to reduce the magnitude of e(s) to zero). 5{

Note that, due to the Laplace integral's property of differentiability

R
Ak A d A A

with respect to system parameters, this process is also directly applicable

2
N

in the time domain.

L

The sensitivities required for this procedure may be obtained in

Lo

the following manner. Refer again to the system diagrammed in Figure 1.

The system transfer function and sensitivities are

e e
Anddn

R

W. (8)K, (2, ,5) -

1 11 .

v(ax.,3 ,8) = r(s) (5) _j
1°7; 1+ wl(S)Kl(ai’S)wz(s)Kz(sj’s) "

::

2 o

X W, (s)K, (a],s)W, (8)K,(8],s) S
;3'_ y(@.{,s) = - 1 1 = 2 2 J 2 ¢ 32 Kl(a]{’S) ¢ r(S) ;.;
(1 + wl(g)Kl(ai,S)wz(S)Kz(Sjas)) i .

e

k) .
wl(s)Qai Kl(ai,s)

+ " P ¢ ( )
FU (K (] ,8)0, (9K, (87,5 ris

—
)
.

3 )
3, K125
1 i

1 + wl(s)Kl(ai,s)wz(s)K2(:j,s) K.(ai.s)

-~

LI o I IR
RETCPIISTIUN e G .

'

. y(di‘,a.

-] (6)
5 )

F = 1 . L Zn K. (al,s)
- 1+ wl(s)Kl(al,s)wz(s)Kz(dj,s) Bui 174

(3], 3008) (7)
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2 2
W2 (s)K (as,8)W, (8)
= y(8I,8) = - S S S -2 K. (82,s) - r(s)
3/ 7Y 1+ W (8)K. (aZ,8)W. (8)K, (82,82 By 2
J ( 1188 1e4,8IW, 2'Py0

wl(S)Kl(ai’S) 3 ( yo 2 o)
= - ~ sW, o (s)— K,(R:,s)y(a;,R:,8).
’ 2 38. "2 i
1 + wl(s)Kl(ai,s)wz(s)Kz(Bj,s) BJ h) 3

(8)

Wl(s)Kl(a{,s)

= - ~ - o W “’
T+ W (5)K, (a;,8)0, (5)K, (37,5) 2 (9)K, (BS,8)

a -
B, Ky(af,s)

1

KGag,e 8 :

Wl(s)Kl(ai,s)

=2 - °W 7
1 + Wl(s)Kl(a{’s)wz(s)Kz(Bj’s) 2(s)K2(Bj,s)

3 - - “

The reason for using the sensitivity filters

dacn b oo

3 .

3o n Kl(ai,s) and
i

3 . . . . 3 .

98j n Kz(Bj,s) in (7) and (9), respectively, instead of 3&; Kl(ai,s) and

2

; K2(83,s), as in (6) and (8), is to avoid using higher-order sensitivity

j
filters when the parameter is in the denominator of the compensator transfer

Q2

. 'IIII'J“‘ £

function.

Example: Let

fz(S)

K,(B7,8) = ———r
£ (87,
] p( ; s)

1
3
(10) j
1
:
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where fz(s) and fp(Sggs) are polynomials in the Laplace operator describing %
’ 4
the zeros and poles, respectively, of Kz(Sjss): Then 1
£ (s) , 3
3 2z J o
- K,(8.,s8) = = £ (B,s) (11) .

3 2 o 2 9B,
3 . (f (87,50)° °F5 P 3
P ] J
.
where -
J
A
3 1 3 5
=7 n K (8!,s) = - K,(87,s) .3
98, 2 * K,(BI,s 3B, 2 ’ 8
3 b 2 (34 ) 3 b -

f (s)
z 3 ’
= - - ~ f (B-‘ss) < (12) .:
f (B,s B, E
p( ; ) 5 5 P

The order of the filter in (11) is lower than that in (1Q) by the order of

g

The signals described in (7) and (9) may be obtained as diagrammed

in Figure 2. The points S1 and S, are known as the "sensitivity points'" of

the system at which appropriate signals may be easily picked off for use in

calculating sensitivites.

1.2. Parameter Deviation Estimation

The approximations of the parameter deviations Aai and Aéj mav be

obtained in any number of ways in order to satisfy whatever error minimization
criteria that are specified. One of the more common tuning goals is that of

finding ;ai and Aij to minimize the magnitude of difference between the

svstem response and a nominal reference response over the entire respouse

period TQ. For this purpose, one may use a very common cost function:; namely,
L
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that of rms error over the specified response period. The cost function

may be expressed as

TR

J= [ (e(r)%dt : (13)
0

In discrete time, (11) becomes

N 2
J= I (e(kT)) s (14)
k=0
where NT = TR.
Now let
o A%}
y = and Ay =
B AR

If a time-domain analogy is made of the error approximation
expressed in (4), the tuning goal in each iteration becomes that of finding

N

AY* = arg min [ £ (e(kT) - V¥ y(ai,B.,kT)'AY)Z] (15)
Ay k=0 v J
in discrete time, or
* TR 2
Ay = arg min | f (e(t) = V v(o,,8.t)«Ay) dt] (16)
Ay 0 f ol

in continuous time,

If data processing were to be performed by a digital computer or
microprocessor, the tuning objective in each iteration would be that stated
in (15), which may be interpreted as a minimization problem in a Euclidean

vector space of order N+l. In this context, (15) may be written as

. e
R RN
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{
o
=
(
10 .
’
:
. A
Ay™ = arg min ”SAY - u" . (17) g
Ay
where "
74
S = v ., B.kT ;
Yy(a1 BJ )
| A_y(a,,8, ,NT) 4
LA S -
and .
4
5 e (0)
o : :
" =
[.‘ H = e(kT) 4
[ _e(NT)
The solution for (17) may be given by a
av* = (sTs) 1T, (18)
if (STS)_l exists (implying that no linear dependencies exist between the
columns of S) [13]. Note that for n+m<2, (18) always applies; for

n+m>3, the possibilit% of linear dependencies between columns of S arises 1
and a more complex computation than (18) must be undertaken in order to

ensure that a suitable solution to (17) may be obtained.

4

1.3. Notes |
Up to this point, this discussion has mentioned only the use of a j
first-order method of parameter approximation. Higher-order methods for %

approximation may be used [14], but generally do not yield significantly
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superior performance. In addition, higher-order methods usually require

longer computation times in each iteration.

'
v's

]
PO O T Tl

A second, more important point to be made here is that the .

sensitivity model used to obtain the pertinent sensitivities need not be

:

the system itself or a copy of the system, as might be inferred by (7) and

[

S '._ .-
1]

u

(9), and as depicted in Figure 2. If a full model of the system is

:

available (in either digital or analog form), this model may be used as %ﬁ
the sensitivity.model. In addition, since the parameter deviations of ;;
interest are only being approximated at each iteration (as opposed to vi
>4

one single exact calculation for the entire process), a sufficiently ;l
descriptive reduced-order model may be substituted as a sensitivity model ié
if the full-order model of the system is inappropriately large or too :;
complex for such use. If the reduced-order model is well-chosen, the f%
performance of the sensitivity points tuning process will not be significantly ;;
degraded by such approximation. If the chosen reduced~order model is suspect, ;i
however, two changes may be made to the procedure outlined above in order ﬁf
to reduce effects of using such a mode. ;E
1. The sensitivity point may be located in the original system, as i;

depicted in Figure 3, instead of the reduced-order model, whereupon only the
input and output of the reduced-order sensitivity model need be accessible.
This eliminates the need for the internal structure of the sensitivity model
to be identical to that of the system. Matching only of input-output
chadaracteristics of the sensitivity model and system would, therefore, be

sutticient in formulating a viable sensitivity model.
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2. The estimation of the parameter deviation vector Ay may be

made using a steepest descent estimate of the form

ay* = CSTp s c€ ]Rl .

instead of the least-squares solution given in (18). This update form is

less sensitive to inaccuracies in the sensitivity matrix S. In addition, if

oAb

c is appropriately chosen, this steepest descent update will tend to have
faster initial convergence. One disadvantage of this form is that, with

= constant ¢, the updates may oscillate about the optimal solution. One

™ possible solution to this problem is to utilize the steepest descent

. estimate for several initial iterations, and then use the least-squares

estimate when in the neighborhood of the optimal solution in order to ensure

convergence.

1.4. Subjects for Discussion

In the ensuing discussion, the concepts of the sensitivity points
°
method will be extended to apply to multiple-input/multiple-output (MIMO)
systems. The Mimo sensitivity points method will then be used to examine,

first of all, techniques of tuning MIMO systems in a rather general sense,

and, then, the applicability of the sensitivity points method to decentralized

P> VR AP

tuning of MIMO systems. Examples and simulations will be included to help
illustrate points to be made. Finally, an example of a realized system will

be given and discussed.
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CHAPTER 2

SENSITIVITY POINTS TUNING IN MULTI-INPUT/MULTI-OUTPUT SYSTEMS

In this chapter, the sensitivity points tuning concepts described

in Chapter 1 for single-input/single-output (SISO) systems will be extended

Py e

to apply to multiple-input/multiple-output (MIMO) systems. Techniques for

sensitivity points tuning of MIMO systems will then be discussed.

e b

2.1. MIMO Sensitivity Points 4
The deviations for the sensitivities of MIMO systems progress in a #

manner quite similar to that described in Chapter 1 for SISO systems. Consider

the very general MIMO system depicted in block diagram form in Figure 4. i
-
This system has an input vector R(s) of dimension dR; output vector y(a,R,s) X
of dimension dy; system feedforward block wl(a,s) with transfer function L
N
matrix of dimension dy X dR, and with adjustable parameter vector j
=
T
a = [al,...,an] ; and system feedback block WZ(B,S) with transfer function 1
9
R
9
T

matrix of dimension dR X dy and with adjustable parameter vector

R = [Bl,...,Bm]T. The transfer function of the system is

y(o,8,8) = [T+ W (2,9)0,(3,8)] W (a,9R(s) . (19)

If one were to follow a notation convention analogous to that used
in the SISO sensitivity derivation, one would find the corresponding MIMO

sensitivities to be

.o
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Nt RCROUN IS b 52; (1 + W (a,8)W,(8",5))
¢ IL+ W (a”,8)W,(8%,9) ] "W (a”,5)R(s)

+ 11+ W) (0, 8)W,(87,8)] 53; W) (a”,8)R(s)

[T + W) (a”,8)W, (87,17 321 W (a’,8) + E(s) (20)

L]

R(s) - WZ(B‘,s)y(a‘,B‘,S) 5

]—l

~
g

3B,
J

[}

- (1 + wl(a‘,s)WZ(B‘,s) wl(a‘,s) WZ(B',S)

P..._ a_BJ' y(a®,87%,s)

F ¢ [I + wl(a‘ys)wz(s"s)]_lwl(a’,S)R(S)

. - -1 . 3 . -
= - [1 + wl(a ,s)wz(B ,S)] wl(a ,S) SEE-WZ(B ,s)y(a,B”,s)

(21)
A realization for obtaining the signals described by (20) and

(21) is diagrammed in Figure 5. If one were to refer back to the SISO

realization depicted in Figure 2, one would see that a commutation of the
sensitivity filter and sensitivity model in Figure 2 would result in a

degenerate form of the realization shown in Figure 5.

The lack of commutativity in the MIMO case has one major implication;

namely, that only one sensitivity filter 2t a time may be used in the

sensitivity-generating process. In the SISO case, commutativity of terms

allows for the placement of multiple filters on the output of the
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sensitivity model. Sensitivities with respect to several different parameters
may, therefore, be obtained simultaneously. Since no such commutativity

T exists in the MIMO case, however, and since only one input vector signal
may be applied to the sensitivity model input at any time, only the

‘; sensitivities with respect to one parameter will be generated at any given
time. This parameter is the parameter corresponding to the sensitivity
filter in use. If the sensitivities with respect to p parameters are desired,
then the process of inputting y(s) (or E(s), depending upon which is
applicable) into a sensitivity filter-sensitivity model pair must be

- executed p times.

If one were to use the MIMO system depicted in Figure 6, one

would find the system transfer function to be

y(0,8,8) = [T+ W ($)K) (5,00, (8)K, (8,8)] "W (9)K, (a,9)R(s) .  (22)

e e
ot

The corresponding system sensitivities would be

v(37,8%,8) = = [T + W (K (a,8)W,(s)K, (8°,5) 17 ]

\ : 3 e (ar .
! wl(s) aai Kl(a ’S)WZ(S)KZ(B »S)

. 1+ wl(s)Kl(a‘,s)wz(s)Kz(B‘,s)]—lwl(s)Kl(a‘,s)R(s) f

(1 + wl(s)xl(a',s)wz(s)xz(s‘,s)]’lwl(s) 52; K, (a”,$)R(s)

+

[T+ W (9K, (a”,8)W, ($)Ky(8,8) ] W, (s) 3§; Ky (27,8)E(s)

(23)
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where

E(s) = R(s) =~ wz(s)Kz(B‘,S)y(a‘,B‘,S)
and
ERRACI R L Wl(s)Kl(a,s)wz(s)K7(8,s)]_l

w (s)K (o, s)W (s) — K (B s)

(1 + wl(s)Kl(a,s)wz(s)Kz(B,s)]-lwl(s)Kl(a,s)R(s)

(1 + wl<s)1<l<u,s>w2(s>x2<e,s>]‘lw1<s>x1<a,s>

W, (s) — K (B,s)y(a,B,s) . (24)

A realization for obtaining the signals described byv (23) and
(24) is diagrammed in Figure 7. An alternate realization of (23) and (24)
is shown in Figure 8. The attractiveness of this alternate realization
lies in the fact that the system itself may be used as the sensitivitv 1odel
without any modifications such as the addition of auxiliary inputs shown in
the realization of Figure 7.

In addition, if a reduced-order model were to be used as the
sensitivity model, it would only need to match the input/output
characteristics of the system.

Use of the alternate realization, however, is limited to those
svstems where KIl(a,s) exists and is realizable, and where wg(s) is
readily replicable. In either case, as in the more general realization

shown in Figure 5, a lack of commutativity implies that onlv the sensitivities
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with respect to one parameter may be obtained at any one time, since only
a single sensitivity filter may be used in series with the sensitivity
model. One possible solution to this problem would be to use multiple
sensitivity models (or multiple approximate sensitivity models), which
would allow for the extraction of sensitivities with respect to as many

parameters as the number of sensitivity models used.

2.2. The MIMO Sensitivity Filter

At this point, it may be appropriate to discuss the interpretation

of the MIMO sensitivity filter, . K(¢,s). In the SISO case, realization

a()
of the sensitivity filter amounted to, quite simply, the realization of an
SISO transfer function. In the MIMO case, however, the transfer function of
the sensitivity filter is a matrix K(¢,s) whose elements mav be denoted as
Kij(°,s) (i denoting row assignment, j denoting column assignment);
3

3()

K(*,s) is simply a matrix of the same dimension as K(-,s) whose

i-j~th element is 3<.) Kij("s)‘
Example: Let
r 7
(1 2 30
i ]
K = Lo 4 5 :
| L
]Lf) 7 :-;—:»:_1‘
then
ro 0 07
k(is) = 11 0 0
«]E (‘,5) - i ?
|
L0 0 0|
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and
0 0 0
2 R(g,s) = |0 0 0
Y3 »S
0o 0-—t
R (s+€)

The realization of this is quite straightforward: for each i and
j, take the jth element of the signal drawn from the system, pass it through

a filter whose transfer function is 3{%7 .(*,s8), ‘and input the resultant

K,
1]
signal as the ith element of the input vector for the sensitivity model. If
3 . . L . . .
3?77 K(*,s) contains multiple elements in its ith row, one must, quite simply,
sum the signals emanating from those filters corresponding to elements in the

ith row of 3%%; K(+,s) and use this summed signal as the ith element of the

input vector to the sensitivity model.

2.3. MIMO Parameter Deviation Estimation

The basic concepts described for the estimation of parameter
deviation in the SISO case are still applicable in the MIMO case. The

basic task is still that of finding

*
Ay" = arg min [SAy - u]

Y

In the MIMO setting, however,

..
R Ay L P

"
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v ¥y (a”,87,0)

vy, (@%,87,NT)
Vv, (@%,87,0)

°

S = 7 Yy (o”,8",NT) 5

V.4 (¢”,87,0)
y-

v, vy (@7,87,NT)
y

and
e; (O

ENT) .
(0) 1

(NT) ,

<

where
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*

With S and u defined in this fashion, Ay may be estimated with
the same methods used in the SISO case.

It should be noted at this point that none of the outputs need

necessarily be tuned with respect to all parameters. If, for instance, one

wished to tune output A by using all parameters in y except for some Bj’

~

all that one would need to do would be to set-g%— yi(t) = Q0 for all
j
This would set 5%— yi(t)ABj = 0, meaning that it would have
j

no effect in the tuning process.

t= [O,TR].

The estimation would, therefore, ignore

*
ABj in approximating Ay .

2.4, MIMO Tuning Techniques

If one were to assume that the MIMO system to be tuned was, in
fact, a network of SISG or MIMO subsystems, then tuning techniques would
fall into two general categories:

centralized tuning and decentralized

tuning.

2.4.1. Centralized tuning

In this scenario, subsystems of the overall system are interconnected
by inter-subsystem feedback as well as any coupling inherent in the plant. As
depicted in Figure 9, the main purpose of a centralized tuner would be to
maintain the inter-subsystem feedback elements in a way that would assure
overall system stability. These particular feedback elements have less effect
on subsystem dynamics than local feedback elements, but may become important

if inherent coupling is strong. Otherwise, a perturbing input to one
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subsystem may excite resonances in some less-damped subsystems via inherent

coupling, which may then result in loss of overall system stability.

Example: Magnetic supension system. Consider the magnetic suspension )
‘4
system sketched in Figure 10. The objective is to maintain the bar at a J

nominal distance hO and to keep it level. The linearized state equations

of the system are

- r \ q o7 r = ?
Sk) 0 1 E 0 0 le 0 0 |
. i -
5x2 ) 2b 0 | b 0 6x2 ¢ 6 6r1
T T + ]
3x3 0 0 i 0 1 5x3 0 0 Srz 3
s |
= -b 0! 2b 0] 5%, -8 -¢_ |
and
Iriy 1 0 o0 ol )
1y . J s )
= X 3
| ‘Syz_‘ 0 0 1 o0 :
where
» = L q + 3Lq )
]

¥
1]
-
Fal
|
(V5]
=
O

h

(o]
- 28

and b h
o]

) S

Notice that the svstem may be treated as two weakly coupled sub-
systems. Note also that these subsvstems appear in the system matrix as

diagonal blocks, which allows for a feedback controller matrix of the form

— v T -
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In this controller form, those elements in the diagonal blocks are associated
with local feedback and the off-diagonal elements govern cross-feedback.

Assume now that a=1, m=2, g=1, h0=l, L=2, and that the sampling interval

is 50 msec. Assume further, for the sake of simplicity, that kll==k23==0.9, 5
kl2 = k24=0.2, and k14= k22 =0, so we will be tuning with just the two cross ]
feedback elements k13 and kZl' This describes an unstable fourth-order %i

system. Computer simulation will demonstrate that, for a step disturbance

applied to subsystem 1 with k ==k2 = -1, this system is unstable. Tuning

13 1

k13 and k21 by the sensitivity points method with a second-order reference

step response (poles at s=-2%+j3.46) results in convergence of k13 and k21

e

to stability in 12 iterations. Responses change from unstable to 327

overshoot in v1 and 1507 overshoot in Yo (tuning inputs: unit step into

"l‘“[ D .'.."o' o

subsystem 1 (left), half step into subsystem 2 (right)). The tuning history

of this particular run is givgn in the Appendix as Table I. The effectiveness

oo .
Ve
POTUUTNE

of a centralized tuner is, therefore, quite clear and may be critical, as

demonstrated by this simple example.

2.4.2. Decentralized tuning

Consider now the problem of decentralized tuning at each subsystem.
In contrast to centralized tuning, local tuners may use onlyv locally
available signals for the tuning process, as depicted in Figure 11. This

implies that the task of local tuning is limited to the tuning of onlv local
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compensators (which may be in either the feedforward or feedback path).
Consequently, only those parameters in the local compensators need be

tuned.

One major issue in decentralized tuning is whether or not exact
tuning is possible from the local level. If the full model of the overall
system is available to the subsystem as a sensitivity model, such tuning
is pessible.

In order to visualize why this is true, assume that the transfer
function matrix of the system may be written in a form such that each
subsystem lies within a block on the main diagonal. This would result in
the placement of local compensator terms in blocks of the main diagonal
of their respective transfer function matrices, which would correspond to
the location of their respective subsystem blocks in the main system
transfer function matrix. The structure of the MIMO sensitivity filter
(discussed in Section 2.2) would, then, ensure that only local signals
would be needed for local tuning, irrespective of the level of coupling to
other subsystems and irrespective of inputs to other subsvstems. This

implies that, if the full model of the system is gzailable as the sensitivitv

model, no approximation of sensitivities will be made; the exact sensitivities

_—y

described in (20) and (21) (or (23) and (24)) will be generated instead.
Availability of such exact information ensures that exact tuning from the
local level is, indeed, possible.

Irrespective of whether or not a full svstem model is available as

LRI (ST

a sensitivity model, decentralized tuning may be performed under anvy of

L s

several schemes. All of such schemes, however, seem to be one or the other

or a combination of two basic methods.
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1. Alternating tune-up. In this scheme, subsystems are individ- :;
K ually tuned one at a time. If the subsystem to be tuned is treated as a :
’ SISO system, it may be tuned by the SISO sensitivity points tuning procedure.
All other subsystems are assumed to be at some respective operating point, ij
but no assumptions are made about the inputs to those subsystems not being ‘f
tuned . ;;
2. Joint tuning. 1In this scheme, the entire network of subsystems ;?
! is treated as one large MIMO system. Each subsystem is given its own tuning .
input, and all inputs are applied together as the input to the MIMO system. ]
All subsystems are tuned simultaneously; the overall tune-up time for the ij
entire network mav, therefore, be reduced. ;S
Computer simulations using these schemes were performed with various ‘
r permutations of step and delayed~-step inputs and confirmed that exact local
tuning can be performed. Tuning histories for these two schemes are given in
- Tables II and IIIl of the Appendix.
&
y

L
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CHAPTER 3
DECENTRALIZED TUNING OF MIMO SYSTEMS
WITH SIMPLIFIED SENSITIVITY MODELS

Given an MIMO system, consisting of coupled subsystems, consider
again the problem of decentralized tuning of individual subsystem controller
sections. As depicted in Figure 11, local tuners have only locaily available
signals for tuning information.

It has been established in Chapter 2 that, using the MIMO sensitivity
points tuning procedure, exact local tuning at a particular subsystem may be
obtained irrespective of coupling or of the size and timing of inputs to
other subsystems if a full model of the overall plant is available at the

subsystem for use as a sensitivity model. Such a full model, however, may

not be readily available for such use. The problem to be addressed, then,
is whether or not a subsystem can be satisfactorily tuned if only a greatly "
simplified model of the overall system is available for use as a sensitivity
model.
In order to assess limitations of decentralized tuning with
°

simplified sensitivity models, three tuning situations have been examined.

1. Tuning with the rest of the plant tuned. In this case, the

subsystem of interest is tuned up from some detuned state, while all of the

j <

other subsystems in the plant are operating at their respective fully tuned

states. Simulation will show that, with this particular situation, tuning
with a simplified sensitivitv model is as effective as tuning with a full

*‘{; model of the plant as the sensitivityv model. *
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2. Alternate tuning. This situation involves cooperation between

subsystems. Subsystems are tuned one after the other in a tuning '"run"

through the entire plant. This process is then repeated until successive

Ve @

tuning runs yield no change in the respective parameters being tuned in each

I+
(L NP

l.,A<

subsystem controller. The only limitation of this tuning process is that,

[

while a particular subsystem is being tuned in the midst of a tuning run, the

LA
a .
v

z

v

rest of the plant must be stable.

» 3. Tuning with the rest of the plant mistuned. This situation, like

U |9y

4 Situation 1, does not involve cooperation between subsystems. For the purposes

;" of this thesis, the term "mistuned" will have the connotation that some

subsystem not being tuned has been detuned to such an extent that the subsystem

being tuned tunes to parameter values different from those arrived at when B

using a full model of the plant for the sensitivity model. This situation -4
arises when one or both of two conditions are met:
(a) The rest of the plant is unstable; or,

(b) The rest of the plant has a natural undamped frequency below

[N

some low frequency which is specific to each overall plant and mav be

e

8

specific ot each subsvstem.

30 RRNABNEE 1Y RN

Example: Magnetic suspension system. Consider, again the magnetic suspension

N arm L
‘

2

described in Chapter 2. The controller matrix is, again,

.

L
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As before, those elements in the diagonal blocks are associated with local
feedback and the off-diagonal elements govern cross-feedback. Since we are
dealing with decentralized tuning, assume that the off-diagonal terms are
zeros. For the values of the suspension model parameters, assume that a=1,
m=2, g=1, ho= l, L=2, and that the sampling interval is 50 msec. Tuning
k

k k23, and k24 by the sensitivity points method with the full plant

11’ 127
model as the sensitivity model and with a second-order reference step
response (double poles at s=-3.,0) results in convergence of parameters to
kll= k23= 1.16 and k12= k24= 0.68. Assume for each subsystem that its
respective simplified sensitivity model is defined by those portions of the
plant's system, control, and output matrices which pertain to that particular

subsystem and local feedback about that subsystem. For the left subsystem

(Subsystem 1), then, the sensitivity modeéel is defined by

-
g l'-O 1 o1 0

11 11
- + u
°12 (2bmokyy kg g 17
and
.:;_‘_- s = {1 0] tljll '
28 N
:{ﬁm o L2
@~
m .
r.'-.
- The right subsystem (Subsystem 2) sensitivitv model is similarly defined.
fif Detuning Subsystem 1 alone to ky; = 0.5 and k;, = 1.5 and tuning
ﬁ!-, result in a demonstration of Situation 1 (tuning with the rest of the plant
;;_f tuned). The sensitivity points tuning procedure yvields convergence in 4
b
b




TR T Y C N P TN e TR R T U TR TR U et el sad el ShACih & Sl duht S i Bl ML S M LAt ~

~

37

Pk A an sut

4

’-

iterations to k.., =1.15 and k

11 12° 0.69. The tuning history for this tune-up

is shown in the Appendix as Table IV.

Detuning Subsystem 1 to kll= 0.5 and k12= 1.5, detuning Subsystem 2
to k23= 0.25 and k24==0.l, and tuning up the two subsystems in alternate
fashion result 1in a demonstration of the alternate tuning scenario of
Situation 2. The sensitivity points tuning procedure yields covergence in

16 iterations in 2 "runs" to k,.=1.2, k 2==0.70, k

11 =1.11, k2 =0.66. The

1 23 4

tuning history for this tune-up is shown in the Appendix as Table V.,

Consider now the case of tuning with the rest of the plant mistuned
(Situation 3). For this example, let us tune Subsystem 1 while Subsystem 2
is tuned to some arbitrary state in order to observe what Subsystem 2 must
be tuned to for it to be considered mistuned. The poles of "the rest of the
plant’ in this case are those of Subsystem 2, and may be calculated from the
sensitivity model system matrix of Subsystem 2 (in this particular example).
Now let us assume the following about all of the tune-ups associated with
this particular situation:

1. The tuning reference input to Subsystem 1 is a unit step.

2. The reference response for Subsystem 1 is a unit step response

of a second-order system with poles at s=-3.

N 3. The disturbance input to Subsystem 2 is 0.5 step delaved bv

.- 0.6 sec.

¢

F . -

- A summarv table of initial and final values of kll and k12’

- corresponding values of k,3 and kqg, and corresponding resultant undamped
f‘ natural frequencies of Subsvstem ! is gziven in the Appendix as Table VI.
& 4 L 4 , . ,

o Respective tunin, histuries are shown in the Appendix as Table VII. As
b,

}j can be seen {n [abi2 Vi, undamped natural frequencies in Subsvstem 2 of 2
> .

a
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AT

8

.

)
bt
]
]
TN

|



38

B ataalalatala

or above result in k.. and kl converging upon values in the neighborhood

11 2

-l
‘.
.

of those attained when tuning with a full model of the plant as the
sensitivity model, while undamped natural frequencies of 1.414 and below

result in final values which are much different.
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CHAPTER 4

CONCLUSION

A general framework has been presented for the tuning of MIMO
systems by use of the MIMO sensitivity points method. Examination and
computer simulation of the MIMO sensitivity points method have revealed
that, for a system composed of weakly coupled subsystems, decentralized
tuning may be satisfactorily performed even if only simplified sensitivity
models are available for use. 1In addition, it has been established that,
if the full system model is available for use as a sensitivity model,
exact tuning of a subsystem from the local level is possible, irrespective
of coupling to other subsystems or inputs to other subsvstems. One natural
extension of these results which may be of interest for further study is
that of the application of MIMO sensitivity points principnles for truly

adaptive (instead of periodic) on-line tuning.
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APPENDIX

TUNING HISTORIES OF TUNING EXAMPLES

i TSP

TABLE I. CENTRALIZED TUNING EXAMPLE: TUNING HISTORY

1
FOR THIS RUN: SUBSYSTEM 1 INPUT = UNIT STEP; ?
SUBSYSTEM 2 INPUT = 0.% STEP. p
CROSS-FEEDBACK GAINS: KIZ1 AND K13 f
ITERATION
1 K21 K13 o
O =1.00000 -1.00000 ﬂ
1 -0.81%44 -0.79887 ]
2 -0.61201 -0.5794; .
3 -0.3278% -0.25119 A
4 -0, 07316 +0.29346 K
s ~0.04473 +2.06399
& ~-0.04061 +2,.51908
7 -0.03874 +2.49874 1
8 -0, 03907 +2.5589S h
9 -0.063870 +2.53242
10 -0.03889 +2,55015
11 -0.03877 +2.53984 k
® 12 -0.03884 +2.54607

.
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e
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TABLE II. DECENTRALIZED TUNING EXAMPLE: ALTERNATING
TUNE-UP TUNING HISTORY

v
Y
.
PN

LOCAL FEEDBACK GAINS:
kK11l AND K12 CORRESPOND TOQ SUBSYSTEM 1
(22 AND K24 CORRESPOND TQ SUBSYSTEM 2

ITERATION .
1 K11 K12 K23 K24

A

FOF THIS RUN: REFERENCE INPUT = UNIT STEP:
DISTURBANCE INPUT = .5 STEP APPLIED TO
OTHER SUBSYSTEM INPUT. .
+1.00 +1.00 +1,00 +1,00 r

3

[ S
bend

) L
1 +1.16 +0. 69 +1.00 +1.,00 B
2 +1.15 +0. 70 +1.00 +1.00 )
e .15 +0.70 +1,00 1,00
3 +1.15 +0, 70 +1.17 +0, 68 L
s +«1.15 +0,70 *1.15 +3. 69 -
a ~1.15 +0.70 +1.1%5 +0. 89 v ]
FOR THIS RUN: REFERENCE INPUT = UNIT STEP: -]
DISTURBANCE INPUT = 0.5 STEP DELAYED N

BY 0.6 SEC APPLIED TO INPUT OF
OTHER SUBSYSTEM INPUT,

'.. .
o

0 +0, 60 +i.40 +2.30 +0.325

1 +0. &0 +1.40 +Q,.14 +1.790
z +0, &0 +1.,40 +0,34 +1.323 gl
< +0, 60 +1.40 +Q,79 +1.23 -
1 +0 .60 +1.40 +1.14 +0.8% "
< +O L O +1.40 +1.15 *O2,70 1
o LR TH) +1.40 +1.14 +0,70 -}
7 +. 80 +1.40 +1.14 -3, 7O o
3 .10 +0. 91 +1.14 +0, 70 g
) *1.1s Y ~1.14 +0, 70 -
Lo +i.15 +0. 69 +1.14 .0, 70 - d

1 ~1.15 0. 69 ~1.14 +.70

TOF TMIS RIUN:  REFERENCE INFUT = UNIT STEF DELAYED &Y
.6 SEC:
DISTURBANCE INPUT = 0,5 STEP AFFLIED TO
OTHER SUBSYSTEM INPUT.
o ). B0 +1.40 +2.70 +0. 75 _
! +1.17 +0. 81 «2.20 s Mot L
- 117 1. 56 2,30 3,75 ENE
: rl.ls +0. 68 +2.30 +9.35 S
4 “1.16 +0. a8 *2.70 +0. 3% -
S +1.16 +0), &8 .17 +1.00 ~
. ) ~i.1ls +1, 458 -1, 472 +1.2 s
: 7 “1.1s +. =8 *).90 1,03 -
R 9 ~1.18 +, 58 +l.18 +0, &8 - i
[ ] ? +1.14 +0. 28 +1.13 0,67 =3
: vy +1.16 +0, 468 “1.13 0, &7 s
- 1
‘_l
?&
4
o
R
et L e e s E o el R ) e .

~ . - - o .
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;‘ TABLE III. DECENTRALIZED TUNING EXAMPLE: JOINT TUNING
TUNING HISTORY

.. LOCAL FEEDBACK GAINS:
b - Ki1l AND K12 CORRESPOND YO SUBSYSTEM 1
= K23 AND K24 CORRESPOND TO SUBSYSTEM 2

-, ITERATION
L2 1 K11 K12 K23 K24

FOR THIS RUN:; SUBSYSTEM 1 INPUT = UNIT STEP;
SUBSYSTEM 2 INPUT = UNIT STEP DELAYED

L BY 0.6 SEC.

- 0 +0.60 +1.30 +1.460 +0.35

- 1 *1.08 +0,.92 +0.95 +0.7%
2 +1.12 +0.469 +1.09 +0.48
s +1.12 +0.70 +1.11 +0. 66
4 +1.12 +0,70 +1.11 +0. 66

FOR THIS RUN: SUBSYSTEM 1 INPUT = UNIT STEP DELAYED
BY 0.6 SEC;
SUBSYSTEM 2 INPUT = 0.6 STEP.

[v] +0,60 +1.30 +1.460 +0.33
1 +1.11 +0.84 +0.90 +0.79
2 +1.14 +0,65 +1.08 +0.74
- +1.14 +0. &7 +1.08 +0.71
4 +1.14 +*0.467 +1.08 +0.71
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TABLE IV. TUNING EXAMPLE FOR DECENTRALIZED TUNING WITH
SIMPLIFIED SENSITIVITY MODELS

FOR THIS RUN: REFERENCE INPUT = UNIT STEP;
DISTURBANCE INPUT = 0.5 STEP APPLIED TO
SUBSYSTEM 2 INPUT;
REFERENCE RESPONSE: SECOND-ORDER STEP
RESPONSE (PDLES AT Sa-3).

LOCAL FEEDBACK GAINS:
k11 AND K12 CORRESPOND TO SUBSYSTEM 1
K22 AND K24 CORRESPOND TO SUBSYSTEM 2

ITERATION
1 K1l K12 K23 K24
[s] +0.50 +1.30 +1.16 +0Q, 68
1 +1.06 +Q.99 +1.16 +0. 68
2 +1.17 +0, 646 +1.16 +0. 68
3 +1.15 +Q.70 +1.16 +0,. 68
4 +1.15 +0. &9 +1.16 +0, 68
]
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TABLE V. TUNING HISTORY: ALTERNATING TUNE-UP WITH SIMPLIFIED ,4

SENSITIVITY MODEL -]

ol

FOR THIS RUN: SUBSYSTEM 1 INPUT = UNIT STEP; 7

SUBSYSTEM 2 INPUT = UNIT STEP DELAYED T

BY 0.4 SEC. . o

REFERENCE RESPONSES: SECOND-ORDER STEP o

RESPONSES (POLES AT S$=-3). ‘i

LOCAL FEEDBACK BGAINS: e

K1l AND K12 CORRESPOND TO SUBSYSTEM 1 -

K23 AND K24 CORRESPOND TO SUBSYSTEM 2 -

ITERATION o

1 Ki1 K12 K23 K24 ij

0 +0. %0 +1.50 +0. 2% +0.10 o

1 +0.47 +1.18 +0.2% +0. 10 3

2 +0.48 +1.23 +0.25 +0.10 o

3 +0.48 +1.23 +0.25% +0. 10 .

4 +0.48 +1.23 +0.28 +0.22 ]

s +0. 48 +1.23 +0.35% +0.42 -

) +0.48 +1.22 +0.49 +0.66 O

7 +0.48 +1.22 +0.72 +0.83

8 +0,48 +1.23 +0.97 +0.79 1

9 +0.48 +1.23 +1.07 +.70 e

10 +0.48 +1.23 «1.07 +0, 70 "1

11 - +0.89 +1.06 +«1.07 +0.70 E

12 Co+1.12 +0,.73 +1.07 +0,70 '
13 +1.12 +0.70 +1.07 +0.70
14 +1.12 +0,70 +1.07 +0.70
15 +1.12 +0.70 +1.11 +0, bé
16 +1.12 +0.70 +1.11 +0. bbb
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TABLE VI. DECENTRALIZED TUNING EXAMPLE: SUMMARY TABLE OF
- RESULTS FROM VARIOUS TUNINGS

Lj SUBSYSTEM 1 H SUBSYSTEM 2
d : ] ! UNDAMPED
- FEEDBACK GAINS | FEEDBACK GAINS ! SUBSYSTEM POLES ! NATURAL
INITIAL ! FINALX ! ! ! FREQUENCY
kil ! K1l H K23 H K24 H S = i (RAD/S)
K12 H K12 H H H !
0,50 H 0,83 H 0.2% .10 H -1.00 i 1.000
1.50 P 0.93 : ' H -1.00 !
2.00 T 0.87 i 0.30 ¢ Q.00 +jl.414 H 1.414
0430 H 0.82 B H ! -j1.414 !
2.00 ! 1.09 } 0.30 | 0.00 ' +32.449 ! 2.449
0. 320 ! 0,68 H H H -j2.449 !
0. 50 ! 1.04 0. 40 ¢ 0.0 ! +j2.000 | 2.000
1.350 ! Q.69 ! | H -32.000 H
2. 50 ) 1.05 H 0.40 ! 0,141 | ~-1.414 + ;1.414 2.000
1.50 } 0,72 H H Vo —1.414 ~ 31.314 !
R 1s) ! 1.06 H 0,40 | Q0. 20 ! -2.000 ' 2,000
1.50 | 0.74 H H : -2.000 H

x WITH A& FULL PLANT AS SENSITIVITY MODEL,
FINAL F11 = 1.146. FINAL K12 = 0,69.

i
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TABLE VII. DECENTRALIZED TUNING EXAMPLE: TUNING HISTORIES FOR
VARIOUS TUNINGS

FOR THESE RUNS:s

LOCAL FEEDBACK GAINS:
K11 AND K12 CORRESPOND TO SUBSYSTEM 1
K23 AND K24 CORRESFOND TO SUBSYSTEM 2

ITERATION
K11l

+0.30
+0,.87
+0.83
+Q.8%5

WK - o

+2.00
0.006
+0,. 05
+0,.38
+0.83
+0.88
+0.87
+0,87

r.
NOU B UM~ O

+2.,00
+0.350
+0.77
+1.03
+1.09
+1.09
+1.09

C &L C

+0.30
+1.909
+1.04
+1.04
+1.048

[

RO N

+0.50
+1.04
+1.06
+1.09
+1,035

L) o

+2.%0
1,02
+1.07
+1.06
+1.06

i) el

K12

+1.50
+1.00
+0.93
+Q.93

+0.30
+0.83
+1.23
+1.31
+0.91
+0.79
+0.82
+0.82

+0.30
+0.79
+0,.90
+Q.76
+0. 67
+0. 68
+0. 468

+1.50
+0.76
+0.68
+0.69
+0.69

+1.50
+0.92
+0,71
+*0.73
+0.73

+1.30
+0. 24
+0.72
+0.74
+0.74

K23

+0.25
+0.25
+«0.25
+0.25

+0,30
+0.30
+0.30
+0,30
+0.30
+0,30
+0.30
+0,320

+0,50
+0,50
+0.50
+0.50
+0,.50
+0.50
+0,50

+0Q. 40
+0. 30
+0.40
+0. 40
+0, 40

+0Q. 40
+0, 40
+0.40
+0. 40
+0, 40

+0. 40
+0,40
+0.40
+Q, 40
+0,.430

SUBSYSTEM 1 INPUT = UNIT STEP;

SUBSYSTEM 2 INPUT = 0.5 STEP DELAYED
BY 0.6 SEC.

REFERENCE RESPONSES:
RESPONSES (POLES AT S=-3).

SECOMD-ORDER STEP

K24

+0.10
+0. 10
+0.10
+0.10

0,00
0. 00
Q.00
0.00
Q.00
Q.00
0.00
0.00

0.00
0. 00
0. 00
0. 00
C. 00
Q.00
Q.00

Q.00
0,00
D, 00
000
2,00

+«0.14
+0Q.14
+0.14
+Q,.14
+0.14

+0. 20
+0.20
+0, 20
+0 .20
+0. 20

A et NS .
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